脑电图在评估脑死亡中的应用

罗本燕 袁俏梅 唐敏 袁美燕 奚云庆

【摘要】目的 评价脑电图(EEG)在判断脑死亡中的作用。方法 选择浙江省各大医院临床诊断为脑死亡患者88例。其中男性54例,女性34例,年龄16～82岁,平均(43.6±18.5)岁。采用意大利EB Neur公司Belight便携式脑电图仪,按国际10/20标准,用针电极进行检测,对88例临床诊断脑死亡患者相隔12小时2次EEG检测。结果 以脑电静息,即不出现>2μv的脑波活动作为脑死亡的EEG诊断标准。88例中有81例(92.04%)患者在相隔12小时2次EEG检查,其结果均为脑电静息表现。其中6例(6.82%)患者EEG检查存在低幅脑波活动。另1例(1.14%)首次EEG检查干扰太大影响结果判断,间隔12小时检查即显示脑电静息。结论 EEG用于评估脑死亡具有较高的敏感性,在严格控制仪器参数及检测条件和动态观察的情况下,可将其作为判断脑死亡的一项重要辅助检查手段。

【关键词】脑电描记术;脑死亡

Electroencephalogram in the diagnosis of brain death LUO Ben-yan, YUAN Qiao-mei, TANG Min, JIANG Meiyin, QIU Yun-qing, Department of Neurology, the First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou 310003, China

Corresponding author: YUAN Qiao-mei, Email: yuanye@zju.edu.cn

【Abstract】Objective To evaluate the value of electroencephalogram (EEG) in the diagnosis of brain death. Methods 88 patients from different hospitals in Zhejiang Province who fulfilled the clinical criteria of brain death were chosen as the subjects to undergo EEG twice in 12 hours, of whom 54 were male and 34 female, aging from 16～82 years old with an average of (43.6±18.5) years old. EEG was performed by Belight portable EEG machine made by EB Neur Company, Italy, according to the international criteria using needle electrodes. Results 81 cases were showing electrical silence in the two EEG examinations; 6 cases had been recorded to have waves higher than 2 μV; in one out of these 6 cases the result was interfered by the artifacts in the initial examination but electrical silence was recorded in this case after 12 h. Conclusion EEG is an important method to assist the diagnosis of brain death for its high sensitivity, only if the instrumental data and testing condition are well controlled.

【Key words】 Electroencephalography; Brain death

脑死亡的概念是伴随着现代急救医学和重症监护技术的发展而产生的。在大多数国家是指包括脑干在内的全脑功能不可逆的丧失。哈佛大学医学院于1968年首先提出了脑死亡的诊断标准,脑电图(EEG)被作为脑死亡的基本条件之一[1]。我国于2003年制定的脑死亡判定标准(成人)(征求意见稿)也将EEG作为脑死亡的一项实验室检查[2]。但仍有不少学者对EEG在脑死亡诊断中的应用价值提出了质疑[3,4]。为此,我们于2003年3月至2005年12月对88例临床诊断为脑死亡患者进行了EEG检查,现将其结果进行分析以进一步评估EEG在脑死亡确认试验中的应用价值。

资料和方法

1. 研究对象:选择浙江省各大医院临床诊断为脑死亡患者88例。其中男性54例,女性34例,年龄16～82岁,平均(43.6±18.5)岁。其中脑外伤42例,脑实质出血9例,脑干出血4例,蛛网膜下腔出血6例,脑血栓形成2例,脑栓塞1例,心跳呼吸骤停10例,溺水4例,有机磷农药中毒2例,一氧化碳中毒1例,慢性支气管炎、重症哮喘各1例,慢性
肾功能衰竭1例，化脓性脑膜炎1例，病毒性脑炎1例，药物性肝损伤1例，脑肿瘤1例。患者从临床诊断到脑死亡到EEG检测的时间为9 h至68 d。

所有患者均排除可能影响预后判断的疾病和EEG检查影响因素，如严重内分泌、代谢紊乱、中毒、休克、低温和使用特殊药物（镇静安眠剂、麻醉剂、神经-肌肉接头阻断剂和抗精神病药物）等。

2. 脑死亡临床判定方法2^3: 包括意识状态、压眶反射、格拉斯哥昏迷量表(GCS)评分、角膜反射、瞳孔对光反射，头眼反射，前庭眼反射，咳嗽反射及自主呼吸诱发试验等。

3. EEG检查方法2: 采用意大利EB Neuro公司Belight便携式电图仪，按国际10/20标准，用电极进行描记，接地电极在额中线，双耳为参考电极。电极间距大于10 mm，电极头皮间阻抗0.1 Ω至10.0 kΩ，两侧各电极的阻抗基本匹配，高频滤波70 Hz，时间常数0.3 s，灵敏度2 μV/mm。描记参考导联30 min，描记中分别以疼痛刺激双上肢、光刺激两侧瞳孔，观察EEG有无变化，并实时记录。间隔12 h行第2次检测。

结 果

1. 临床检查结果：88例患者均深昏迷，压眶无反应，GCS评分均为3分；角膜反射、瞳孔对光反射、咳嗽反射、头眼反射、前庭眼反射均消失；机械通气维持呼吸，自主呼吸诱发试验证实无自主呼吸。88例患者均符合我国脑死亡判定标准(成人)(征求意见稿)中脑死亡的临床诊断标准2^3。随访显示88例患者中1例在第2次EEG检查前死亡，73例在第2次EEG检查当天至第10天死亡，11例在第2次EEG检查后第11至30天死亡，3例分别在第2次EEG检查后第33、42和75天死亡。

2. EEG检测结果：结果判断以脑电静息，即不出现＞2 μV的脑波活动作为判定脑死亡的EEG诊断标准5^6。88例中有81例(92.04%)患者在间隔12 h行第2次EEG检查，其结果均呈脑电静息表现。其中6例(6.82%)患者EEG检查存在低频脑波活动。另1例(1.14%)首次EEG检查干扰太大，影响结果判断，间隔12 h检查显示脑电静息。同时，这7例患者还同时行经颅多普勒(TCD)检查。该7例脑死亡患者脑电活动及TCD所检测的颅内血流结果详见表1。

讨 论

评估脑死亡作为一项严肃而慎重的工作，其判定标准在大多数国家是建立在临床判断和确认试验的基础上。EEG、TCD均是确定脑死亡常用辅助检查方法；脑死亡患者EEG表现为脑电静息，即不

<table>
<thead>
<tr>
<th>序号</th>
<th>性别</th>
<th>年龄 (岁)</th>
<th>病因</th>
<th>首次EEG检查</th>
<th>间隔12 h EEG检查</th>
<th>TCD检查</th>
<th>检查结果</th>
<th>死亡时间</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>男</td>
<td>16</td>
<td>化脓性脑膜炎</td>
<td>低频2～5.5 μV；4～6 Hz 0波 视 1.5～2.5 Hz 6波</td>
<td>低频2～5.5 μV；4～6 Hz 0波 视 1.5～2.5 Hz 6波</td>
<td>双侧大脑中动脉振荡波</td>
<td>3 d</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>男</td>
<td>16</td>
<td>溺水</td>
<td>低频2～17 μV；4～6 Hz 0波与3～3.5 Hz 6波</td>
<td>低频2～10 μV；4～7 Hz 0波</td>
<td>双侧大脑中动脉收缩波</td>
<td>2 d</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>女</td>
<td>70</td>
<td>亚急性心内膜炎，脑栓塞</td>
<td>低频3～8 μV；4～7 Hz 0波 视 1.5～3 Hz 6波</td>
<td>低频3～8μV；4～7 Hz 0波与1.5～3 Hz 6波</td>
<td>双侧大脑中动脉收缩波</td>
<td>1 d</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>男</td>
<td>16</td>
<td>车祸致外伤</td>
<td>低频2～8 μV；4～7 Hz 0波与2～3.5 Hz 6波</td>
<td>低频2～8 μV；4～7 Hz 0波与2～3.5 Hz 6波</td>
<td>双侧大脑中动脉收缩波</td>
<td>3 d</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>男</td>
<td>38</td>
<td>车祸致脑外伤</td>
<td>低频20～35 μV；4～5 Hz 0波与2～3.5 Hz 6波</td>
<td>低频20～45 μV；4～7.5 Hz 0波与1～3 Hz 6波</td>
<td>双侧大脑中动脉收缩波</td>
<td>3 d</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>男</td>
<td>82</td>
<td>心跳呼吸骤停</td>
<td>低频 2～12 μV；14～30 Hz β活动，5～7 Hz 0波与8～10 Hz α波</td>
<td>未检查</td>
<td>检查结果</td>
<td>未进行</td>
<td>当天</td>
</tr>
<tr>
<td>7</td>
<td>女</td>
<td>42</td>
<td>车祸致脑外伤</td>
<td>低频2～12 μV；14～30 Hz β活动，5～7 Hz 0波与8～10 Hz α波</td>
<td>低频2～12 μV；14～30 Hz β活动，5～7 Hz 0波与8～10 Hz α波</td>
<td>双侧大脑中动脉收缩波</td>
<td>9 d</td>
<td></td>
</tr>
</tbody>
</table>
出现＞2 μV 的脑波活动[3,6]。我们对88例临床诊断为脑死亡的患者行 EEG 检查，其中51例呈脑电静息，阳性率为19.04%；其诊断脑死亡的阳性率要高于 TCD 检查[7]。

Grigg 等[2]对56例临床诊断为脑死亡的患者行 EEG 检查，首次 EEG 检查呈脑电静息者率仅为39例(69.6%)，其阳性率明显低于本研究。究其原因，Grigg 等的研究中有20例(37.5%)未行自主呼吸诱发试验检查，不能排除部分患者存在自主呼吸的可能，而部分患者不满足脑死亡的临床诊断，此时 EEG 检查出现脑电活动的几率可能会明显增高。这导致了该研究中 EEG 诊断脑死亡的敏感性较低。近年来国内外均报道了部分脑干反射存在的昏迷或植物状态患者也会出现脑电静息[8,9]，这提示脑电静息对脑死亡的诊断并非特异，此时应注意鉴别以免误诊。综合上述两方面原因，在对临床拟诊脑死亡患者行 EEG 检查确认之前，必须确定这些患者脑干反射消失及无自主呼吸。EEG 判定脑死亡必须建立在完整的大脑诊断基础上，只有这样才能提高 EEG 诊断脑死亡的敏感性及特异性。此外，脑电静息也可在低体温及麻醉等镇静药物中出现[10-11]，我们已排除低温患者1例，且所有患者未使用镇静药，从而保证了研究结果的可靠性。

以往研究发现部分脑死亡患者仍可能存在脑电活动，主要有以下3类：低电压脑电活动，睡眠样脑电活动和α波样脑电活动[3,4,12]。本组88例脑死亡患者中有6例存在脑电活动（表1），其中1例5 EEG 检查表现为低偏慢波；另1 EEG 表现为低电压β活动，其中1例为α波；本组患者 EEG 检查未见表现睡眠样脑电活动。这6例患者均同时给予 TCD 检查（表1）。其中4例和5 TCD 检查分别表现为单侧和双侧大脑有残存血流，6 例表现基本正常的血流频谱，此3 例患者因脑外伤术后及脑萎缩导致颅内压相对较低而致脑电波的继续存在，脑血流的存在与残余脑电活动的存在是一致的，此时应注意到脑电死亡观察时间时或进一步脑血管造影或放射性核素扫描检查；随访证实例4,5 患者经积极治疗3日后死亡，6 由于家属放弃治疗于当天自动出院后死亡。例1~3 患者 TCD 则出现颅内血流停止，虽然出现脑电活动存在而无颅内血流的分离现象；这可能是因为门或颅内外侧支循环血流部分供应脑皮质和脑实质所致，而这些侧支循环血流并不能为 TCD 所检测到。我们的结果还显示了部分脑死亡患者表现为颅内血流存在而无脑电活动的分离现象[7]，推测这可能是颅内虽有残存血流而脑皮质和脑实质却无血流灌注的结果。对于脑死亡患者，当 EEG 检查的脑电活动和 TCD 所检测的脑血流出现分离现象时，进一步脑血管造影或放射性核素扫描可有助于脑死亡诊断，但要明确产生上述现象的病理生理机制可能尚需进一步微观化研究。此外，对于首次 EEG 检查存在脑电活动者，国内张天锡等[13]建议应进一步行动态 EEG 检查。

我们的研究中88例研究对象中仅7例次 EEG 检查因干扰太大影响结果判定，似见有3~7 μV 脑电波，间隔12h 检查为脑电静息。在实际操作中 EEG 检查对周围环境及仪器的要求非常高，为了检测到极其微弱的脑电信号，EEG 必须具有很高的灵敏度[14]（2 μV/mm），在检测中应注意避免干扰。我们在被检患者周围设立了隔离区以及使用专用的电缆等措施，为成功地避免了各种环境因素的干扰。但是呼吸机、心电监护仪等医疗设备产生的电流干扰及患者的心电干扰是不可避免的，在 EEG 判读时应注意鉴别。

我们的研究结果表明，EEG 用于评估脑死亡具有较高的敏感性，在严格控制仪器参数及检测条件和动态观察的情况下，可将其作为判断脑死亡的一项重要辅助检查手段。

参考文献
6 袁素勋, 罗本, 神经电生理和经颅多普勒在脑死亡诊断中的应用. 国外医学脑血管疾病分册, 2005, 12, 147-149.
8 Rothstein TL, Recovery from near death following cerebral anoxia; a case report demonstrating superiority of median somatosensory evoked potentials over EEG in predicting a favorable outcome after cardiopulmonary resuscitation. Resuscitation, 2004, 60: 335-341.
视神经脊髓炎一家系二例

刘红 张本杰 张天林

例1 女，56岁。于1998年出现左眼视力下降，诊断为球后视神经炎，激素治疗后好转。随后3年内左眼交替出现3次球后视神经炎，视力逐渐下降，双眼有指指视力。曾行视觉诱发电位检查示：双眼P100潜伏期延长，2001年反复出现左下肢麻木，后出现双下肢截瘫，大小便失禁，有颈胸、腰椎磁共振成像(MRI)显示内脱髓鞘病变累及脊髓全段，头颅MRI未见明显异常，诊断为视神经脊髓炎。2005年7月突然出现左眼视力不清入院。查体：右眼视力眼前指动，左眼视力为0.1，指指视力，双侧视野正常，视盘边缘清晰，眼底未见异常，双下肢肌力IV级，腱反射(++)，双下肢 Hoffmann征(+)，双下肢肌力0级，右侧 Chaddock征(±)，胸5以下浅痛觉及触觉减退。给予激素、环磷酰胺、甲强龙等治疗后左眼视力改善。

例2 女，29岁，系例1之女，于2003年出现右眼上转疼痛，视力下降，诊断为球后视神经炎，激素治疗后好转，行视觉诱发电位检查示：右眼P100潜伏期延长，2005年2月突然出现双下肢麻木力弱，胸3、4节段感觉异常，双下肢、双足感觉减退，头颅MRI未见明显异常，诊断为视神经脊髓炎，激素治疗后好转。2006年1月患者因劳累再次出现双下肢麻木力弱入院。查体：双下肢肌力IV级，肌张力低，腱反射(++)，病理征未引出，胸5以下浅痛觉及触觉减退。继续给予激素、甲强龙等治疗后症状明显改善。

参考文献

1. 王玉池，主编。神经病学。第5版。北京：人民卫生出版社，2004，195。
2. 朱燕华，王玉池。视神经脊髓炎(Devic’s综合征)临床研究进展。国外医学神经病学神经外科学分册，2001，28，90-93。

(收稿日期: 2006-02-28)
(本文编辑：郑晴)